/%

Kendall Ronzano
Long Assignment#2
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define STRSZ 50
#define FILESZ 50

struct agent {
long ID;
char lastname[STRSZ]1;
char first[STRSZ];
int year;
char term;
int rankil;
int rank2;
struct agent *xnext;
char key;

Yi

typedef struct list{
struct agent xhead;
struct agent xtail;
int size;

Ylist;

//Prototypes

struct agent *xmake_agent(long ID, char last[STRSZ], char first[STRSZ], int year,
char term, int rankl, int rank2);

void printDatabase(list *database, FILE xfptr);

void printDatabaseSave(list *xdatabase, FILE xfptr);

void sortByIDA(list *database);

void sortByIDD(1list *database);

void sortByLastA(list *xdatabase);

void sortBylLastD(list xdatabase);

void sortByFirstA(list *database);

void sortByFirstD(list *xdatabase);

void sortByTermA(list xdatabase);

void sortByTermD(list *database);

void sortByRanklA(list *xdatabase);

void sortByRank1D(list xdatabase);

void sortByRank2A(list *database);

void sortByRank2D(list *xdatabase);

struct agent * SearchlLastname(char last[STRSZ], list *database);
struct agent *x SearchFirst(char first[STRSZ], list *database);

void printAgent(struct agent * agent);

void deleteAgent(list xdatabase);

void addAgent(list *database);

void clear();

int compareTerm(int yearl, int year2, char terml, char term2);

void encryptWord(char *word, char key);

void decryptWord(char *word, char key);

void readCodes(list *database);

//Def main function
int main(void)

{
char input;
input = 'i';
list database;
database.head = NULL;
database.tail = NULL;
database.size = 0;

while (input '= 'q' && input !'= 'Q'){
printf("Please enter task: \nF=> file\nP=> print\nN=> new\n?=> search\nD=>
delete\nS=> save\nQ=> quit\n");

scanf("%c", &input);

//switch prompting task selection

switch(input){
case 'F':
case 'f':

//ask the user for the filename(s) containing the information
printf("Please enter the file name:");
char filename[FILESZ];
scanf("%s", filename);

FILE xfptr;
fptr = fopen(filename, "r");

if (fptr == NULL){
printf("Error, could not read file\n");
return(0); }

long ID;

char lastname[STRSZ];
char first[STRSZ];
int year;

char term;

int rankl;

int rank2;

struct agent *last = database.head = NULL;
struct agent *current;

//get info from file and put into list
while(fscanf(fptr, "%091u %s %s %d%c %d %d", &ID, lastname, first,
&year, &term, &rankl, &rank2) == 7){
current = make_agent(ID, lastname, first, year, term, rankl, rank2);
if(database.head == NULL){
last = database.head = current;
} else {
last = last->next = current;
¥
database.size++;

}

database.tail = last;
database.tail->next = NULL;

fclose(fptr);

//decrypt file
readCodes(&database);
current = database.head;
while(current != NULL){

decryptWord(current->first, current->key);
decryptWord(current—->lastname, current->key);

current= current->next;
}

break;

case 'P':
case 'p':
//print the contents of the database, sorted by any of the items in the list
if (database.size == 0) {
printf("Please make a database before trying to store it\n");
break;}
clear();

char p_input;

printf("Please enter sort by:\nI=> ID\nL=> Last Name\nF=> First
Name\nT=> Term\nR=> Rankingl\nK=> Ranking2\n");

scanf("%c", &p_input);

// prompt for which sort by
switch(p_input){
case 'I':
case 'i':
//SORT BY 1ID
I
char s_input;
clear();
printf("Please select sort order:\nA=> Ascending\nD=>
Descending\n");
scanf("%c", &s_input);
//ascending vs descending
switch(s_input){

case 'A':
case 'a':
i
sortByIDA(&database);
printDatabase(&database, stdout);
break;
case 'D':
case 'd':
sortByIDD(&database);
printDatabase(&database, stdout);
break;
default:
printf("Invalid input.\n");
break;
b
break;
case 'L':
case 'l':

//SORT BY LAST NAME
I
char 1_input;
clear();
printf("Please select sort order:\nA=> Ascending\nD=>
Descending\n");
scanf("%c", &1l_input);
switch(1_input){
case 'A':
case 'a':

I
sortBylLastA(&database);
printDatabase(&database, stdout);

break;
case 'D':
case 'd':

sortBylLastD(&database);
printDatabase(&database, stdout);

break;
default:
printf("Invalid input.\n");
break;
b
break;
case 'F':
case 'f':

//SORT BY FIRST NAME
I
char f_input;
clear();
printf("Please select sort order:\nA=> Ascending\nD=>
Descending\n");
scanf("%c", &f_input);

switch(f_input){
case 'A':
case 'a':

1
sortByFirstA(&database);
printDatabase(&database, stdout);

break;
case 'D':
case 'd':

sortByFirstD(&database);
printDatabase(&database, stdout);

break;
default:
printf("Invalid input.\n");
break;
}
break;
case 'T':
case 't':

//SORT BY TERM => year then char
I
char t_input;
clear();
printf("Please select sort order:\nA=> Ascending\nD=>
Descending\n");
scanf("%c", &t_input);
switch(t_input){
case 'A':
case 'a':
I
sortByTermA(&database);
printDatabase(&database, stdout);

break;
case 'D':
case 'd':

sortByTermD(&database);
printDatabase(&database, stdout);

break;
default:
printf("Invalid input.\n");
break;
}
break;
case 'R':
case 'r':

//SORT BY RANKING1
I
char r_input;
clear();
printf("Please select sort order:\nA=> Ascending\nD=>
Descending\n");
scanf("%c", &r_input);
switch(r_input){
case 'A':
case 'a':
I
sortByRanklA(&database);
printDatabase(&database, stdout);

break;
case 'D':
case 'd':

sortByRanklD(&database);
printDatabase(&database, stdout);
break;

default:
printf("Invalid input.\n");
break;

break;

case 'K':
case 'k':
//SORT BY RANKING2
1
char k_input;
clear();
printf("Please select sort order:\nA=> Ascending\nD=>
Descending\n");
scanf("%c", &k_input);
switch(k_input){
case 'A':
case 'a':
1
sortByRank2A(&database);
printDatabase(&database, stdout);

break;
case 'D':
case 'd':

sortByRank2D(&database);
printDatabase(&database, stdout);

break;
default:
printf("Invalid input.\n");
break;
¥
break;
¥
break;
case 'N':
case 'n':

//add a new candidate to the list
I
if (database.size == 0) {
printf("Please make a database before trying to store it\n");
break;?}
addAgent(&database);
break;
case '?':
//search for a particular candidate’s name and display their information
I
if (database.size == 0) {
printf("Please make a database before trying to store it\n");
break;}

int x = -1;

struct agent * found;

while (x != 0 && x != 1){
printf("Please enter © for first name/ 1 for last:\n");
scanf("%d", &x);
¥

if (x == 0){
printf("Please enter name search:\n");
scanf("%s", first);
found = SearchFirst(first, &database);
if (found !'= NULL)

printAgent(found);
else
printf("Did not find agent with last name %s.\n", first);
h
else{

printf("Please enter name search:\n");
scanf("%s", lastname);
found = SearchlLastname(lastname, &database);
if (found !'= NULL)
printAgent(found);
else
printf("Did not find agent with last name %s.\n", lastname);
h
break;

case 'D':
case 'd':
//remove a candidate from the database (requires searching)
if (database.size == 0) {
printf("Please make a database before trying to store it\n");
break;}
deleteAgent(&database);
break;
case 'S':
case 's':
//save the new database to file(s) that can be later used in the program
I
if (database.size == 0) {
printf("Please make a database before trying to store it\n");
break;}
printf("Please enter a new file name:");
char newfile[FILESZ];
scanf("%s", newfile);

FILE *xnewfptr;
newfptr = fopen(newfile, "w");

if (newfptr == NULL){
printf("Error, could not write file, will print to screen\n");
newfptr = stdout;
¥
else {
printf("Save Successful.\n");
¥
current = database.head;
//encrypt new saved file
while(current != NULL){

printf("%s %s\n", current->first, current->lastname);
encryptWord(current->first, current->key);
encryptWord(current—->lastname, current->key);
printf("%s %s\n", current->first, current->lastname);

current= current->next;
¥
printDatabase(&database, newfptr);
fclose(newfptr);

break;
case 'Q':
case 'q':

//Quit / Exit program
printf("Peace Out Homies\n");

break;
default:
printf("Invalid input.\n");
break;
¥
clear();
¥

return(0);
}

//make a new agent in list
struct agent *xmake_agent(long ID, char last[STRSZ], char first[STRSZ], int year,
char term, int rankl, int rank2){

struct agent *new = malloc(sizeof(struct agent));

new—>ID = 1ID;

strcpy(new—>lastname, last);

strcpy(new—>first, first);

new->year = year;

new—>term = term;

new—>rankl = rankl;
new—>rank2 = rank2;
new->next = NULL;
new—>key = 13;
return new;

¥

//functions to print database

void printDatabase(list *database, FILE xfptr) {
struct agent xcurr;

printf("
for(curr
fpri

ID Last Name 1st Term R1
= database->head; curr != NULL; curr =
ntf(fptr, "%091u %s %s %02d%c %d %d\n",

R2\n");
curr->next) {
curr—>ID,curr—->lastname, curr-

>first, curr->year, curr->term, curr->rankl, curr->rank2);

}
}

void printDatabaseSave(list xdatabase,

struct agent *curr;

for(curr
fpri

database->head; curr != NULL; curr
ntf(fptr, "%091u %s %s %02d%c %d %d\n",

FILE xfptr) {

curr->next) {
curr—>ID,curr->lastname,curr-

>first, curr->year, curr->term, curr->rankl, curr->rank2);

b

//sort funct

void sortByI
int 1i;

for(i =

stru

stru

stru

whil

}
L
void sortByI
int 1i;
for(i =
stru
stru
stru
whil

ions A for ascending D for descending
DA(list *database) {

i < database->size; i++) {

agent* current database->head;

ct agent* next current->next;

ct agentx previous NULL;

e(next != NULL) {

if (current->ID > next->ID) {

if (current database->head) {
database->head = next;

} else {

N
ct

previous->next = next;
}
if(next == database->tail){
database->tail = current;
ks

current->next = next->next;

next—>next = current;
previous = next;
next = current->next;
}
else {
previous = current;
current = next;
next = next->next;
b

DD(1list *database) {

0;
ct
ct

i < database->size; i++) {
agent* current = database->head;
agentx next current->next;

ct agent* previous NULL;

e(next != NULL) {

if (current->ID < next->ID) {

if (current database->head){

database->head = next;
} else {
previous—->next = next;

}

if(next == database->tail){
database->tail = current;

¥

current->next = next->next;

next->next = current;

previous = next;
next = current->next;

¥
else {
previous = current;
current = next;
next = next->next;
}
¥
¥
¥
void sortByLastA(list *database) {
int 1;
for(i = @; 1 < database->size; i++) {
struct agentx current = database->head;
struct agent*x next = current->next;
struct agentx previous = NULL;
while(next != NULL) {
if (strcmp(current->lastname, next—->lastname) > 0)
if (current == database->head){
database->head = next;
} else {
previous->next = next;
b
if(next == database->tail){
database->tail = current;
¥
current->next = next->next;
next—->next = current;
previous = next;
next = current->next;
b
else {
previous = current;
current = next;
next = next->next;
¥
ks
¥
¥
void sortBylLastD(list xdatabase) {
int 1i;

for(i = @; i < database->size; i++) {
struct agent* current = database->head;
struct agent* next = current->next;
struct agentx previous = NULL;
while(next != NULL) {
if (strcmp(current->lastname, next—->lastname) < 0)

if (current == database->head){
database->head = next;
} else {

previous->next = next;
¥

if(next == database->tail){
database->tail = current;

¥

current->next = next->next;

next—->next = current;

previous = next;
next = current->next;

}
else {
previous = current;
current = next;
next = next->next;
b
b
¥
b
void sortByFirstA(list xdatabase) {
int 1i;
for(i = @0; 1 < database->size; i++) {
struct agentx current = database->head;
struct agentx next = current->next;
struct agentx previous = NULL;
while(next !'= NULL) {
if (strcmp(current->first, next->first) > 0)
if (current == database->head){
database->head = next;
} else {
previous—->next = next;
¥
if(next == database->tail){
database->tail = current;
b
current->next = next->next;
next->next = current;
previous = next;
next = current->next;
¥
else {
previous = current;
current = next;
next = next->next;
}
¥
¥
¥
void sortByFirstD(list *database) {
int 1i;

for(i = @; 1 < database->size; i++) {
struct agentx current = database->head;
struct agent* next = current->next;
struct agentx previous = NULL;
while(next != NULL) {
if (strcmp(current->first, next->first) < 0)

if (current == database—->head){
database->head = next;
} else {

previous->next = next;

}

if(next == database->tail){
database->tail = current;

b

current->next = next->next;

next->next = current;

previous = next;
next = current->next;
b
else {
previous = current;
current = next;
next = next->next;

ks
¥
¥
void sortByTermA(list xdatabase) {
int 1i;
for(i = @; i < database->size; i++) {
struct agentx current = database->head;
struct agent* next = current->next;
struct agentx previous = NULL;
while(next != NULL) {
if (compareTerm(current->year, next->year, current->term, next->term) ==
1) {
if (current == database->head){
database->head = next;
} else {
previous—->next = next;
¥
if(next == database->tail){
database->tail = current;
b
current->next = next->next;
next—->next = current;
previous = next;
next = current->next;
¥
else {
previous = current;
current = next;
next = next->next;
¥
ks
¥
¥
void sortByTermD(list xdatabase) {
int 1i;

for(i = @; i < database->size; i++) {
struct agent* current = database->head;
struct agent* next = current->next;
struct agentx previous = NULL;
while(next != NULL) {
if (compareTerm(current->year, next->year, current->term, next->term) ==

0) {
if (current == database->head){
database->head = next;
} else {
previous—->next = next;
¥

if(next == database->tail){
database->tail = current;

¥

current->next = next->next;

next->next = current;

previous = next;
next = current->next;

}

else {
previous = current;
current = next;
next = next->next;

}

}
void sortByRanklA(list xdatabase) {
int 1i;
for(i = @; i < database->size; i++) {
struct agentx current = database->head;
struct agent*x next = current->next;
struct agentx previous = NULL;
while(next != NULL) {
if (current->rankl > next->rankl) {

if (current == database->head){
database->head = next;
} else {

previous->next = next;
¥

if(next == database->tail){
database->tail = current;

¥

current->next = next->next;

next—->next = current;

previous = next;
next = current->next;

}
else {
previous = current;
current = next;
next = next->next;
b
b
¥
b
void sortByRank1D(1list *database) {
int 1i;
for(i = @0; 1 < database->size; i++) {
struct agentx current = database->head;
struct agentx next = current->next;
struct agentx previous = NULL;
while(next != NULL) {
if (current->rankl < next->rankl) {
if (current == database->head){
database->head = next;
} else {
previous—->next = next;
¥
if(next == database->tail){
database->tail = current;
b
current->next = next->next;
next->next = current;
previous = next;
next = current->next;
¥
else {
previous = current;
current = next;
next = next->next;
}
¥
¥
¥
void sortByRank2A(list *database) {
int 1i;

for(i = @; 1 < database->size; i++) {
struct agentx current = database->head;
struct agent* next = current->next;
struct agentx previous = NULL;

while(next != NULL) {
if (current->rank2 > next->rank2) {

if (current == database—->head){
database->head = next;
} else {

previous->next = next;

¥

if(next == database->tail){
database->tail = current;

b

current->next = next->next;

next->next = current;

previous = next;
next = current->next;

b
else {
previous = current;
current = next;
next = next->next;
¥
ks
¥
¥
void sortByRank2D(1list *database) {
int 1i;
for(i = @; i < database->size; i++) {
struct agent* current = database->head;
struct agent* next = current->next;
struct agentx previous = NULL;
while(next != NULL) {
if (current->rank2 < next->rank2) {
if (current == database->head){
database->head = next;
} else {
previous->next = next;
¥
if(next == database->tail){
database->tail = current;
¥
current->next = next->next;
next—>next = current;
previous = next;
next = current->next;
}
else {
previous = current;
current = next;
next = next->next;
b
b
¥
b

//search functions
struct agent * SearchLastname(char lastname[STRSZ], list *database){
struct agentx current = database->head;
while(current != NULL){
if(strcmp(current -> lastname, lastname) == 0)
return current;
current = current —-> next;
¥
return NULL;
¥
struct agent * SearchFirst(char first[STRSZ], list *database){
struct agentx current = database->head;

while(current !'= NULL){
if(strcmp(current —-> first, first) == 1)
return current;
current = current —-> next;

¥
return NULL;
¥
void printAgent(struct agent * agent)
{
printf ("%091u %s %s %02d%c %d %d\n", agent->ID,agent->lastname,agent->first,
agent->year, agent->term, agent->rankl, agent->rank2);
}
void deleteAgent(list xdatabase)
{

int y = -1;
while (y !'= 0 &y !'= 1){
printf("Find Agent to Remove\nPlease enter © to search by first name/ 1
to search by last name:\n");
scanf("%d", &y);
¥
struct agent * prev = NULL;
struct agent *x curr = database->head;
if (y == 0){
char firstname[STRSZ];
printf("Please enter name search:\n");
scanf("%s", firstname);

int flag = 0;
while(curr != NULL){
if(stremp(curr->first, firstname) == 0){
if(curr == database->head){
database->head = curr->next;
¥
if (curr == database->tail){
database->tail = prev;
h

if (prev != NULL)

prev->next = curr—->next;
printf("Deleted agent: ");
printAgent(curr);
free(curr);

flag = 1;
database->size——;
curr = NULL;
break;

b

prev = curr;

curr = curr->next;

ks
if(flag == 0)
printf("Did not find agent with first name %s.\n", firstname);

b
else{
char lastname[STRSZ];
printf("Please enter name search:\n");
scanf("%s", lastname);

int flag = 0;
while(curr '= NULL){
if(strcmp(curr->lastname, lastname) == 0){
if(curr == database->head){

database->head = curr->next;

}
if (curr == database->tail){
database—->tail = prev;

¥
if (prev != NULL)

prev—>next = curr->next;
database->size——;
printf("Deleted agent: ");
printAgent(curr);
free(curr);

curr = NULL;
flag = 1;
break;

prev = curr;
Curr = curr->next;

b
if(flag == 0)
printf("Did not find agent with first name %s.\n", lastname);
b
¥
void addAgent(list *database)
{
long ID;
char lastname[STRSZ];
char first[STRSZ];
int year;
char term;
int rankil;
int rank2;
char key = -1;
printf("Please enter Agent ID:\n");
scanf("%1lu", &ID);
clear();
printf("Please enter Agent last name:\n");
scanf("%s", lastname);
printf("Please enter Agent first name:\n");
scanf("%s", first);
printf("Please enter Agent term:\n");
scanf("%02d%c", &year, &term);
printf("Please enter Agent rankingl:\n");
scanf("%d", &rankl);
printf("Please enter Agent ranking2:\n");
scanf("%d", &rank2);

database->tail->next = make_agent(ID, lastname, first, year, term, rankil,
rank2);
database->tail = database->tail->next;
while(key < 97 || key >122){
printf("Please enter an Agent key between a-z inclusive:\n");
scanf("%c", &key);
¥

database->tail->key = key - 96;
¥

void clear() {
char junk;
do {
scanf("%c", &junk);
} while (junk != '\n');
}

//if 1 > 2 then return 1, else return ©
int compareTerm(int yearl, int year2, char terml, char term2){
if (yearl > year2)
return 1;
if (yearl < year2)
return 0;

//compare the chars
int term_num_1, term_num_2;

if (terml == 'W' || terml == 'w')
term_num_1 = 1;

else if (terml == 'S' || terml == 's')
term_num_1 = 2;

else if (terml =

= 'X'" || terml == 'x')
term_num_1 = 3;
else

term_num_1 =4;

if (term2 == 'W' || term2 == 'w')
term_num_2 = 1;

else if (term2 == 'S' || term2 == 's')
term_num_2 = 2;

else if (term2 =

= 'X'" || term2 == 'x')
term_num_2 = 3;
else

term_num_2 =4;

if (terml > term2)
return 1;

else
return 0;

¥

void decryptWord(char *word, char key) {
int 1i;
for(i = @; i < strlen(word); i++){
char curr = word[il-(int)key;
if(curr < 'a')
word[i] = curr+26;
else word[i] = curr;

}

void readCodes(list xdatabase){
FILE *codesptr;
long ID;
char key;
codesptr = fopen("codes.txt", "r");

if (codesptr == NULL){
printf("Error, could not read file\n");
return;

b

while(fscanf(codesptr, "%lu %c", &ID, &key) == 2){
struct agent* current = database->head;
while(current != NULL){

if(current->ID == ID){
current->key = (current->lastname[@] - key);
if (current->key < 0)
current->key += 26;
b
current = current -> next;

}
fclose(codesptr);
}

void encryptWord(char *xword, char key) {

int 1i;
for(i = 0; i < strlen(word); i++){
word[i]-= 26-(int)key;
if(word[i] > 'z')
word[i] —-= 26;
else if (word[i] < 'a')
word[i] += 26;

