
/*
Kendall Ronzano
Long Assignment#2
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define STRSZ 50
#define FILESZ 50

struct agent {
 long ID;
 char lastname[STRSZ];
 char first[STRSZ];
 int year;
 char term;
 int rank1;
 int rank2;
 struct agent *next;
 char key;

};

typedef struct list{
 struct agent *head;
 struct agent *tail;
 int size;
}list;

//Prototypes
struct agent *make_agent(long ID, char last[STRSZ], char first[STRSZ], int year,
char term, int rank1, int rank2);
void printDatabase(list *database, FILE *fptr);
void printDatabaseSave(list *database, FILE *fptr);
void sortByIDA(list *database);
void sortByIDD(list *database);
void sortByLastA(list *database);
void sortByLastD(list *database);
void sortByFirstA(list *database);
void sortByFirstD(list *database);
void sortByTermA(list *database);
void sortByTermD(list *database);
void sortByRank1A(list *database);
void sortByRank1D(list *database);
void sortByRank2A(list *database);
void sortByRank2D(list *database);
struct agent * SearchLastname(char last[STRSZ], list *database);
struct agent * SearchFirst(char first[STRSZ], list *database);
void printAgent(struct agent * agent);
void deleteAgent(list *database);
void addAgent(list *database);
void clear();
int compareTerm(int year1, int year2, char term1, char term2);
void encryptWord(char *word, char key);
void decryptWord(char *word, char key);
void readCodes(list *database);

//Def main function
int main(void)
{
 char input;

 input = 'i';
 list database;
 database.head = NULL;
 database.tail = NULL;
 database.size = 0;

 while (input != 'q' && input != 'Q'){

 printf("Please enter task: \nF=> file\nP=> print\nN=> new\n?=> search\nD=>

delete\nS=> save\nQ=> quit\n");
 scanf("%c", &input);

 //switch prompting task selection
 switch(input){
 case 'F':
 case 'f':
 //ask the user for the filename(s) containing the information
 printf("Please enter the file name:");
 char filename[FILESZ];
 scanf("%s", filename);

 FILE *fptr;
 fptr = fopen(filename, "r");

 if (fptr == NULL){
 printf("Error, could not read file\n");
 return(0); }

 long ID;
 char lastname[STRSZ];
 char first[STRSZ];
 int year;
 char term;
 int rank1;
 int rank2;

 struct agent *last = database.head = NULL;
 struct agent *current;

 //get info from file and put into list
 while(fscanf(fptr, "%09lu %s %s %d%c %d %d", &ID, lastname, first,

&year, &term, &rank1, &rank2) == 7){
 current = make_agent(ID, lastname, first, year, term, rank1, rank2);
 if(database.head == NULL){
 last = database.head = current;
 } else {
 last = last->next = current;
 }
 database.size++;
 }

 database.tail = last;
 database.tail->next = NULL;

 fclose(fptr);
 //decrypt file
 readCodes(&database);
 current = database.head;
 while(current != NULL){

 decryptWord(current->first, current->key);
 decryptWord(current->lastname, current->key);

 current= current->next;
 }
 break;

 case 'P':
 case 'p':
 //print the contents of the database, sorted by any of the items in the list
 if (database.size == 0) {
 printf("Please make a database before trying to store it\n");
 break;}
 clear();

 char p_input;
 printf("Please enter sort by:\nI=> ID\nL=> Last Name\nF=> First

Name\nT=> Term\nR=> Ranking1\nK=> Ranking2\n");
 scanf("%c", &p_input);

 // prompt for which sort by
 switch(p_input){
 case 'I':
 case 'i':
 //SORT BY ID
 ;
 char s_input;
 clear();
 printf("Please select sort order:\nA=> Ascending\nD=>

Descending\n");
 scanf("%c", &s_input);
 //ascending vs descending
 switch(s_input){
 case 'A':
 case 'a':
 ;
 sortByIDA(&database);
 printDatabase(&database, stdout);
 break;
 case 'D':
 case 'd':
 sortByIDD(&database);
 printDatabase(&database, stdout);
 break;
 default:
 printf("Invalid input.\n");
 break;
 }
 break;
 case 'L':
 case 'l':
 //SORT BY LAST NAME
 ;
 char l_input;
 clear();
 printf("Please select sort order:\nA=> Ascending\nD=>

Descending\n");
 scanf("%c", &l_input);
 switch(l_input){
 case 'A':
 case 'a':
 ;
 sortByLastA(&database);
 printDatabase(&database, stdout);
 break;
 case 'D':
 case 'd':
 sortByLastD(&database);
 printDatabase(&database, stdout);
 break;
 default:
 printf("Invalid input.\n");
 break;
 }
 break;
 case 'F':
 case 'f':
 //SORT BY FIRST NAME
 ;
 char f_input;
 clear();
 printf("Please select sort order:\nA=> Ascending\nD=>

Descending\n");
 scanf("%c", &f_input);

 switch(f_input){
 case 'A':
 case 'a':
 ;
 sortByFirstA(&database);
 printDatabase(&database, stdout);
 break;
 case 'D':
 case 'd':
 sortByFirstD(&database);
 printDatabase(&database, stdout);
 break;
 default:
 printf("Invalid input.\n");
 break;
 }
 break;
 case 'T':
 case 't':
 //SORT BY TERM => year then char
 ;
 char t_input;
 clear();
 printf("Please select sort order:\nA=> Ascending\nD=>

Descending\n");
 scanf("%c", &t_input);
 switch(t_input){
 case 'A':
 case 'a':
 ;
 sortByTermA(&database);
 printDatabase(&database, stdout);
 break;
 case 'D':
 case 'd':
 sortByTermD(&database);
 printDatabase(&database, stdout);
 break;
 default:
 printf("Invalid input.\n");
 break;
 }
 break;
 case 'R':
 case 'r':
 //SORT BY RANKING1
 ;
 char r_input;
 clear();
 printf("Please select sort order:\nA=> Ascending\nD=>

Descending\n");
 scanf("%c", &r_input);
 switch(r_input){
 case 'A':
 case 'a':
 ;
 sortByRank1A(&database);
 printDatabase(&database, stdout);
 break;
 case 'D':
 case 'd':
 sortByRank1D(&database);
 printDatabase(&database, stdout);
 break;
 default:
 printf("Invalid input.\n");
 break;
 }
 break;

 case 'K':
 case 'k':
 //SORT BY RANKING2
 ;
 char k_input;
 clear();
 printf("Please select sort order:\nA=> Ascending\nD=>

Descending\n");
 scanf("%c", &k_input);
 switch(k_input){
 case 'A':
 case 'a':
 ;
 sortByRank2A(&database);
 printDatabase(&database, stdout);
 break;
 case 'D':
 case 'd':
 sortByRank2D(&database);
 printDatabase(&database, stdout);
 break;
 default:
 printf("Invalid input.\n");
 break;
 }
 break;
 }
 break;
 case 'N':
 case 'n':
 //add a new candidate to the list
 ;
 if (database.size == 0) {
 printf("Please make a database before trying to store it\n");
 break;}
 addAgent(&database);
 break;
 case '?':
 //search for a particular candidate’s name and display their information
 ;
 if (database.size == 0) {
 printf("Please make a database before trying to store it\n");
 break;}

 int x = -1;
 struct agent * found;
 while (x != 0 && x != 1){
 printf("Please enter 0 for first name/ 1 for last:\n");
 scanf("%d", &x);
 }
 if (x == 0){
 printf("Please enter name search:\n");
 scanf("%s", first);
 found = SearchFirst(first, &database);
 if (found != NULL)
 printAgent(found);
 else
 printf("Did not find agent with last name %s.\n", first);
 }
 else{
 printf("Please enter name search:\n");
 scanf("%s", lastname);
 found = SearchLastname(lastname, &database);
 if (found != NULL)
 printAgent(found);
 else
 printf("Did not find agent with last name %s.\n", lastname);
 }
 break;

 case 'D':
 case 'd':
 //remove a candidate from the database (requires searching)
 if (database.size == 0) {
 printf("Please make a database before trying to store it\n");
 break;}
 deleteAgent(&database);
 break;
 case 'S':
 case 's':
 //save the new database to file(s) that can be later used in the program
 ;
 if (database.size == 0) {
 printf("Please make a database before trying to store it\n");
 break;}
 printf("Please enter a new file name:");
 char newfile[FILESZ];
 scanf("%s", newfile);

 FILE *newfptr;
 newfptr = fopen(newfile, "w");

 if (newfptr == NULL){
 printf("Error, could not write file, will print to screen\n");
 newfptr = stdout;
 }
 else {
 printf("Save Successful.\n");
 }
 current = database.head;
 //encrypt new saved file
 while(current != NULL){

 printf("%s %s\n", current->first, current->lastname);
 encryptWord(current->first, current->key);
 encryptWord(current->lastname, current->key);
 printf("%s %s\n", current->first, current->lastname);

 current= current->next;
 }
 printDatabase(&database, newfptr);
 fclose(newfptr);
 break;

 case 'Q':
 case 'q':
 //Quit / Exit program
 printf("Peace Out Homies\n");
 break;

 default:
 printf("Invalid input.\n");
 break;

 }
 clear();
 }
 return(0);
}

//make a new agent in list
struct agent *make_agent(long ID, char last[STRSZ], char first[STRSZ], int year,
char term, int rank1, int rank2){
 struct agent *new = malloc(sizeof(struct agent));
 new->ID = ID;
 strcpy(new->lastname, last);
 strcpy(new->first, first);
 new->year = year;
 new->term = term;

 new->rank1 = rank1;
 new->rank2 = rank2;
 new->next = NULL;
 new->key = 13;
 return new;
}

//functions to print database
void printDatabase(list *database, FILE *fptr) {
 struct agent *curr;
 printf(" ID Last Name 1st Term R1 R2\n");
 for(curr = database->head; curr != NULL; curr = curr->next) {
 fprintf(fptr, "%09lu %s %s %02d%c %d %d\n", curr->ID,curr->lastname,curr-

>first, curr->year, curr->term, curr->rank1, curr->rank2);
 }
}
void printDatabaseSave(list *database, FILE *fptr) {
 struct agent *curr;
 for(curr = database->head; curr != NULL; curr = curr->next) {
 fprintf(fptr, "%09lu %s %s %02d%c %d %d\n", curr->ID,curr->lastname,curr-

>first, curr->year, curr->term, curr->rank1, curr->rank2);
 }
}

//sort functions A for ascending D for descending
void sortByIDA(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;
 while(next != NULL) {
 if (current->ID > next->ID) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }
 else {
 previous = current;
 current = next;
 next = next->next;
 }
 }
 }
}
void sortByIDD(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;
 while(next != NULL) {
 if (current->ID < next->ID) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }
 else {
 previous = current;
 current = next;
 next = next->next;
 }
 }
 }
}
void sortByLastA(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;
 while(next != NULL) {
 if (strcmp(current->lastname, next->lastname) > 0) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }
 else {
 previous = current;
 current = next;
 next = next->next;
 }
 }
 }
}
void sortByLastD(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;
 while(next != NULL) {
 if (strcmp(current->lastname, next->lastname) < 0) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }
 else {
 previous = current;
 current = next;
 next = next->next;
 }
 }
 }
}
void sortByFirstA(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;
 while(next != NULL) {
 if (strcmp(current->first, next->first) > 0) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }
 else {
 previous = current;
 current = next;
 next = next->next;
 }
 }
 }
}
void sortByFirstD(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;
 while(next != NULL) {
 if (strcmp(current->first, next->first) < 0) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }
 else {
 previous = current;
 current = next;
 next = next->next;

 }
 }
 }
}
void sortByTermA(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;
 while(next != NULL) {
 if (compareTerm(current->year, next->year, current->term, next->term) ==

1) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }

 else {
 previous = current;
 current = next;
 next = next->next;
 }
 }
 }
}
void sortByTermD(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;
 while(next != NULL) {
 if (compareTerm(current->year, next->year, current->term, next->term) ==

0) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }

 else {
 previous = current;
 current = next;
 next = next->next;
 }
 }
 }

}
void sortByRank1A(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;
 while(next != NULL) {
 if (current->rank1 > next->rank1) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }
 else {
 previous = current;
 current = next;
 next = next->next;
 }
 }
 }
}
void sortByRank1D(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;
 while(next != NULL) {
 if (current->rank1 < next->rank1) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }
 else {
 previous = current;
 current = next;
 next = next->next;
 }
 }
 }
}
void sortByRank2A(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;

 while(next != NULL) {
 if (current->rank2 > next->rank2) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }
 else {
 previous = current;
 current = next;
 next = next->next;
 }
 }
 }
}
void sortByRank2D(list *database) {
 int i;
 for(i = 0; i < database->size; i++) {
 struct agent* current = database->head;
 struct agent* next = current->next;
 struct agent* previous = NULL;
 while(next != NULL) {
 if (current->rank2 < next->rank2) {
 if (current == database->head){
 database->head = next;
 } else {
 previous->next = next;
 }

 if(next == database->tail){
 database->tail = current;
 }
 current->next = next->next;
 next->next = current;

 previous = next;
 next = current->next;
 }
 else {
 previous = current;
 current = next;
 next = next->next;
 }
 }
 }
}

//search functions
struct agent * SearchLastname(char lastname[STRSZ], list *database){
 struct agent* current = database->head;
 while(current != NULL){
 if(strcmp(current -> lastname, lastname) == 0)
 return current;
 current = current -> next;
 }
 return NULL;
 }
struct agent * SearchFirst(char first[STRSZ], list *database){
 struct agent* current = database->head;

 while(current != NULL){
 if(strcmp(current -> first, first) == 1)
 return current;
 current = current -> next;
 }

 return NULL;
 }

void printAgent(struct agent * agent)
{
 printf("%09lu %s %s %02d%c %d %d\n", agent->ID,agent->lastname,agent->first,

agent->year, agent->term, agent->rank1, agent->rank2);
}
void deleteAgent(list *database)
{
 int y = -1;
 while (y != 0 && y != 1){
 printf("Find Agent to Remove\nPlease enter 0 to search by first name/ 1

to search by last name:\n");
 scanf("%d", &y);
 }
 struct agent * prev = NULL;
 struct agent * curr = database->head;
 if (y == 0){
 char firstname[STRSZ];
 printf("Please enter name search:\n");
 scanf("%s", firstname);
 int flag = 0;
 while(curr != NULL){
 if(strcmp(curr->first, firstname) == 0){
 if(curr == database->head){
 database->head = curr->next;
 }
 if (curr == database->tail){
 database->tail = prev;

 }
 if (prev != NULL)
 prev->next = curr->next;
 printf("Deleted agent: ");
 printAgent(curr);
 free(curr);
 flag = 1;
 database->size--;
 curr = NULL;
 break;
 }
 prev = curr;
 curr = curr->next;
 }
 if(flag == 0)
 printf("Did not find agent with first name %s.\n", firstname);

 }
 else{
 char lastname[STRSZ];
 printf("Please enter name search:\n");
 scanf("%s", lastname);
 int flag = 0;
 while(curr != NULL){
 if(strcmp(curr->lastname, lastname) == 0){
 if(curr == database->head){
 database->head = curr->next;

 }
 if (curr == database->tail){
 database->tail = prev;

 }
 if (prev != NULL)
 prev->next = curr->next;
 database->size--;
 printf("Deleted agent: ");
 printAgent(curr);
 free(curr);
 curr = NULL;
 flag = 1;

 break;
 }

 prev = curr;
 curr = curr->next;
 }
 if(flag == 0)
 printf("Did not find agent with first name %s.\n", lastname);
 }
 }
void addAgent(list *database)
{
 long ID;
 char lastname[STRSZ];
 char first[STRSZ];
 int year;
 char term;
 int rank1;
 int rank2;
 char key = -1;
 printf("Please enter Agent ID:\n");
 scanf("%lu", &ID);
 clear();
 printf("Please enter Agent last name:\n");
 scanf("%s", lastname);
 printf("Please enter Agent first name:\n");
 scanf("%s", first);
 printf("Please enter Agent term:\n");
 scanf("%02d%c", &year, &term);
 printf("Please enter Agent ranking1:\n");
 scanf("%d", &rank1);
 printf("Please enter Agent ranking2:\n");
 scanf("%d", &rank2);

 database->tail->next = make_agent(ID, lastname, first, year, term, rank1,

rank2);
 database->tail = database->tail->next;
 while(key < 97 || key >122){
 printf("Please enter an Agent key between a-z inclusive:\n");
 scanf("%c", &key);
 }

 database->tail->key = key - 96;
}

void clear() {
 char junk;
 do {
 scanf("%c", &junk);
 } while (junk != '\n');
}

//if 1 > 2 then return 1, else return 0
int compareTerm(int year1, int year2, char term1, char term2){
 if (year1 > year2)
 return 1;
 if (year1 < year2)
 return 0;

 //compare the chars
 int term_num_1, term_num_2;

 if (term1 == 'W' || term1 == 'w')
 term_num_1 = 1;
 else if (term1 == 'S' || term1 == 's')
 term_num_1 = 2;
 else if (term1 == 'X' || term1 == 'x')
 term_num_1 = 3;
 else
 term_num_1 =4;

 if (term2 == 'W' || term2 == 'w')
 term_num_2 = 1;
 else if (term2 == 'S' || term2 == 's')
 term_num_2 = 2;
 else if (term2 == 'X' || term2 == 'x')
 term_num_2 = 3;
 else
 term_num_2 =4;

 if (term1 > term2)
 return 1;
 else
 return 0;

}

void decryptWord(char *word, char key) {
 int i;
 for(i = 0; i < strlen(word); i++){
 char curr = word[i]-(int)key;
 if(curr < 'a')
 word[i] = curr+26;
 else word[i] = curr;
 }

}

void readCodes(list *database){
 FILE *codesptr;
 long ID;
 char key;
 codesptr = fopen("codes.txt", "r");

 if (codesptr == NULL){
 printf("Error, could not read file\n");
 return;
 }

 while(fscanf(codesptr, "%lu %c", &ID, &key) == 2){
 struct agent* current = database->head;
 while(current != NULL){
 if(current->ID == ID){
 current->key = (current->lastname[0] - key);
 if (current->key < 0)
 current->key += 26;
 }
 current = current -> next;
 }

 }

 fclose(codesptr);

}

void encryptWord(char *word, char key) {

 int i;
 for(i = 0; i < strlen(word); i++){
 word[i]-= 26-(int)key;
 if(word[i] > 'z')
 word[i] -= 26;
 else if (word[i] < 'a')
 word[i] += 26;
 }
}

